On the conjectures of Henkel and Weston

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 265173
(http://iopscience.iop.org/0305-4470/26/19/044)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:45

Please note that terms and conditions apply.

COMMENT

On the conjectures of Henkel and Weston

Scott Allen and R K Pathria
Department of Physics, University of Waterloo, Waterioo, Ontario, Canada, N2L 3G1

Received 29 March 1993

Abstract

Recent conjectures of Henkel and Weston on certain two-dimensional sums are examined, and some significant generalizations of these sums are developed. The results so obtained should be useful in analysing finite-size effects in systems subjected to non-periodic boundary conditions. ${ }^{\text {' }}$

In a recent letter Henkel and Weston (1992) have calculated the universal amplitude A of the correlation length ξ of the spherical model of ferromagnetism in geometry $L^{2} \times \infty^{1}$ under antiperiodic boundary conditions:

$$
\begin{equation*}
A=\frac{\xi}{2 L}=\frac{1}{2 \sqrt{2} \pi}\left(1+\frac{2 y^{2}}{\pi^{2}}\right)^{-1 / 2} \tag{1}
\end{equation*}
$$

where y is the 'thermogeometric parameter' of the system (see Pathria 1983). At the bulk critical temperature, $T=T_{c}(\infty), y$ is determined by the constraint equation

$$
\begin{equation*}
2 y=\sum_{q(2)}^{\prime}(-1)^{q_{x}+q_{y}} q^{-1} \mathrm{e}^{-2 y q} \quad q=\sqrt{q_{x}^{2}+q_{y}^{2}}>0 \tag{2}
\end{equation*}
$$

In contrast with periodic boundary conditions, equation (2) does not have a real solution. One is then led to the following sums:

$$
\begin{equation*}
S(v)=\sum_{q_{x}=1}^{\infty} \sum_{q_{y}=0}^{\infty}(-1)^{q_{x}+q_{y}} q^{-1} \sin (2 v q) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
C(v)=\sum_{q_{x}=1}^{\infty} \sum_{q_{y}=0}^{\infty}(-1)^{q_{x}+q_{y}} q^{-1} \cos (2 v q) \tag{4}
\end{equation*}
$$

On the basis of numerical studies, Henkel and Weston conjectured that

$$
\begin{equation*}
S(v)=-\frac{1}{2} v \quad \text { if }-\frac{\pi}{\sqrt{2}}<v<\frac{\pi}{\sqrt{2}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
C(v)=0 \quad \text { if } v= \pm \frac{5}{4} \tag{6}
\end{equation*}
$$

concluding that $y= \pm i \frac{5}{4}$ and hence

$$
\begin{equation*}
A=\frac{1}{2 \sqrt{2} \pi}\left(1-\frac{25}{8 \pi^{2}}\right)^{-1 / 2}=0.13614 \tag{7}
\end{equation*}
$$

Our analysis shows that, while (5) is correct, (6) is not. The resulting modification of
A is not that significant but we do acquire a better understanding of the sums involved.
Our initial approach to this problem was to reconsider the exponential sum

$$
\begin{align*}
& E_{\tau}(\alpha)=\sum_{q(2)}^{\prime} \cos \left(2 \pi q_{1} \tau_{1}\right) \cos \left(2 \pi q_{2} \tau_{2}\right) q^{-1} \mathrm{e}^{-\alpha q} \\
& 0 \leqslant \tau_{1,2} \leqslant \frac{1}{2} \quad \tau=|\tau|>0 \tag{8}
\end{align*}
$$

which had been studied earlier by Chaba and Pathria (1976) with α real and positive. The obvious procedure to follow now was to carry out analytic continuation of this sum to complex α and then set $\alpha= \pm 2 i v$; with $\tau=\left(\frac{1}{2}, \frac{1}{2}\right)$, that would readily provide the desired information about the sums $S(v)$ and $C(v)$. However, keeping in mind the possibility of extending the work of Henkel and Weston to general geometry $L^{d^{*}} \times \infty^{d}$, we decided to dwell on some of our more recent work on lattice sums (Allen and Pathria 1993) and look at this problem in a somewhat broader context.

In the work cited above, we have studied phase-modulated sums involving modified Bessel functions $K_{v}(z)$ in arbitrary dimensions $m(=1,2,3, \ldots)$; by definition,

$$
\begin{align*}
& \mathscr{K}_{\mathrm{r}}(v \mid m ; y)=\sum_{\boldsymbol{g}(m)}^{\prime} \cos (2 \pi q \cdot \tau)(y q)^{-v} K_{v}(2 y q) \\
& q=|\boldsymbol{q}(m)|>0 \quad 0 \leqslant \tau_{j} \leqslant \frac{1}{2}(j=1, \ldots, m) \quad \tau=|\tau(m)|>0 . \tag{9}
\end{align*}
$$

In practical applications, $m=d^{*}$ while v is related to $d\left(=d^{*}+d^{\prime}\right)$, the total dimensionality of the system under consideration; the sum appearing in the constraint equation pertains to $v=(d-2) / 2$. To begin with, the parameter y is real and positive; however, making use of the Poisson summation formula, we have rendered these sums into a form that allows analytic continuation into the region $0 \geqslant y^{2}>-\pi^{2} \tau^{2}$. Setting $y= \pm i v$, where v is real and $0 \leqslant v<\pi \tau$, we obtain some remarkable results for a class of sums involving ordinary Bessel functions, $J_{v}(z)$ and $Y_{v}(z)$, of which $S(v)$ and $C(v)$ are special cases.

First we obtain the following result:

$$
\begin{align*}
\mathscr{F}_{\tau}(v \mid m ; v) & =\sum_{q(m)}^{\prime} \cos (2 \pi q \cdot \tau)(v q)^{-v} J_{v}(2 v q) \\
& =-\frac{1}{\Gamma(v+1)} \quad v>-\frac{1}{2} \quad 0 \leqslant v<\pi \tau . \tag{10}
\end{align*}
$$

We note that, while for $m=1$ the above result is already known (see Morse and Feshbach 1953, Watson 1958), for $m>1$ it seems to be new. From a purely mathematical point of view, the importance of (10) may lie in the fact that, with $\tau=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$, it provides a representation of a null-function, over the interval ($0, \pi \sqrt{m}$), by a Schlömilch series in m dimensions with non-vanishing coefficients.

For $v=\frac{1}{2}$, (10) gives

$$
\begin{equation*}
\sum_{q(m)}^{\prime} \cos (2 \pi q \cdot \tau) q^{-1} \sin (2 v q)=-2 v \quad|v|<\pi \tau \tag{11}
\end{equation*}
$$

With $m=2$ and $\tau=\left(\frac{1}{2}, \frac{1}{2}\right)$, this yields $4 S(v)=-2 v$. Conjecture (5) is thereby proved.
Next we obtain

$$
\begin{align*}
\mathscr{Y}_{\tau}(v \mid m ; v) & =\sum_{q(m)}^{\prime} \cos (2 \pi q \cdot \tau)(v q)^{-v} Y_{v}(2 v q) \\
& =A_{\tau}(v \mid m ; v)+v^{-2 v} B_{\tau}\left(v \mid m ; v^{2}\right) \tag{12}
\end{align*}
$$

where the precise form of the functions A and B depends on whether v is, or is not, equal to $k(=0,1,2, \ldots)$.
(i) $v \neq k(k=0,1,2, \ldots)$:

$$
\begin{align*}
& A_{\tau}(v \mid m ; v)=\pi^{-1} \cos (\pi v) \Gamma(-v) \tag{13}\\
& B_{\tau}\left(v \mid m ; v^{2}\right)=-\pi^{2 v-(m / 2)-1} \sum_{r=0}^{\infty} D_{\tau}(v-r \mid m) \frac{1}{r!}\left(\frac{v^{2}}{\pi^{2}}\right)^{r} \tag{14}
\end{align*}
$$

where

$$
D_{\tau}(v \mid m)= \begin{cases}\pi^{(m / 2)-2 v} \Gamma(v) \sum_{q(m)}^{\prime} \cos (2 \pi q \cdot \tau) q^{-2 v} & v>0 \tag{15a}\\ \Gamma\left(\frac{1}{2} m-v\right) \sum_{l(m)}|l+\tau|^{2 v-m} & v<0\end{cases}
$$

(ii) $v=k(k=0,1,2, \ldots)$:

$$
\begin{align*}
& A_{\tau}(k \mid m ; v)=-\frac{v^{2 k}}{\pi k!}\left[\ln \left(\frac{v^{2}}{\pi^{2}}\right)-\psi(k+1)+\pi^{-(m / 2)} \bar{D}_{\tau}(m)\right] \tag{16}\\
& B_{\tau}\left(k \mid m ; v^{2}\right)=-\pi^{2 k-(m / 2)-1} \sum_{\substack{r=0 \\
(r \neq k)}}^{\infty} D_{\tau}(k-r \mid m) \frac{1}{r!}\left(\frac{v^{2}}{\pi^{2}}\right)^{r} \tag{17}
\end{align*}
$$

where $\psi(k+1)$ is the digamma function while

$$
\begin{equation*}
\bar{D}_{\tau}(m)=\lim _{v \rightarrow 0}\left[D_{\tau}(v \mid m)+\frac{\pi^{(m / 2)}}{v}\right] . \tag{18}
\end{equation*}
$$

Explicit expressions for the functions $D_{\tau}(v \mid m)$ and $\bar{D}_{\tau}(m)$ for some special values of τ and m are given in Allen and Pathria (1993); clearly, for cases like those, the m dimensional sum in (12) is effectively reduced to a one-dimensional sum, as in (14) or (17).

For $v=\frac{1}{2}$, we obtain

$$
\begin{align*}
& \sum_{q(m)}^{\prime} \cos (2 \pi q \cdot \tau) q^{-1} \cos (2 v q) \\
&=\pi^{(1-m) / 2} \sum_{r=0}^{\infty} D_{\tau}\left(\left.\frac{1}{2}-r \right\rvert\, m\right) \frac{1}{r!}\left(\frac{v^{2}}{\pi^{2}}\right)^{r} \quad|v|<\pi \tau \tag{19}
\end{align*}
$$

For $m=1$, the sum on the left can be evaluated by elementary means, giving $-\ln \left\{4\left[\sin ^{2}(\pi \tau)-\sin ^{2} v\right]\right\}$ which, for $\tau=\frac{1}{2}$, vanishes at $v= \pm \pi / 3$. It was the existence of this exact result (see Singh and Pathria 1985, Singh et al 1986) that triggered Henkel and Weston (1992) to explore the corresponding problem with $m=2$, leading to the sum $C(v)$, and (erroneously) hope that once again an exact zero would result. We
now find that, for $|v|<\pi / \sqrt{2}$,

$$
\begin{align*}
& C(v)=\frac{1}{\sqrt{\pi}} \sum_{r=0}^{\infty} \frac{1}{r!}\left(2^{r+1 / 2}-1\right) \Gamma\left(r+\frac{1}{2}\right) \zeta\left(r+\frac{1}{2}\right) \beta\left(r+\frac{1}{2}\right)\left(\frac{v^{2}}{\pi^{2}}\right)^{r} \\
&= \sqrt{2}\left(1-\frac{2 v^{2}}{\pi^{2}}\right)^{-1 / 2}+\sqrt{\frac{2}{\pi}} \\
& \times \sum_{r=0}^{\infty} \frac{1}{r!} \Gamma\left(r+\frac{1}{2}\right)\left\{\left(1-2^{-r-1 / 2}\right) \zeta\left(r+\frac{1}{2}\right) \beta\left(r+\frac{1}{2}\right)-1\right\}\left(\frac{2 v^{2}}{\pi^{2}}\right)^{r} \tag{20}
\end{align*}
$$

where $\zeta(v)$ is the Riemann zeta function while

$$
\begin{equation*}
\beta(v)=\sum_{j=0}^{\infty}(-1)^{l}(2 l+1)^{-v} \quad v>0 \tag{21}
\end{equation*}
$$

In the above form, the sum $C(v)$ converges much faster than in the original form (4). Working with (4) and employing 1600×1600 terms in q_{x} and q_{y}, we found that the zero of this sum was approximately 1.252 ; working with (20) and employing only 10 terms in r, we concluded that this number was more like 1.25213. Conjecture (6) is thereby disproved, though the resulting value of A, viz. $0.13624 \ldots$, is not very different from the one given in (7).

References

Allen S and Pathria R K 1993 J. Math. Phys. 341497
Chaba A N and Pathria R K 1976 J. Phys. A: Math. Gen. 91411
Henkel M and Weston R A 1992 J. Phys. A. Math. Gen. 25 L207
Morse P M and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw Hill) p 1323
Pathria R K. 1983 Can. J. Phys. 61228
Singh S and Pathria R K 1985 Phys. Rev. B 324618
Singh S, Pathria R K and Fisher M E 1986 Phys. Rev. B 336415
Watson G N 1958 A Treatise on the Theory of Bessel Functions 2nd edn (Cambridge: Cambridge University Press) p 635

